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ALLOWING FOR INTERMOLECULAR ENERGY EXCHANGE IN THE DESCRIPTION 

OF RELAXATION PROCESSES IN TERMS OF ADIABATIC VARIABLES 

V. M. StrelVchenya UDC 533.6.011 

The solution of the complete system of gasdynamic equations, supplemented by kinetic 
equations describing vibrational-rotational relaxation or the kinetics of phase transforma- 
tions [1-4], is an exceedingly complex problem. The difficulty of the problem makes it im- 
portant to find simpler methods of describing transformation kinetics by means of approxi- 
mate solutions of relaxation equations [i, 5]. One such method was developed in [6-9] for 
rate coefficients of arbitrary form. It is based on the introduction of adiabatic variables 
which diagonalize (in the case of distributions which are smooth with respect to quantum 
number) the initial system of kinetic equations to within a small parameter. 

In the present study - a continuation of [6-9] - we examine two methods of describing 
the contribution of intermolecular energy exchange to the relaxation of the populations of 
individual levels in terms of adiabatic variables. The methods make it possible to obtain 
approximate analytic solutions of the kinetic equations for different relaxation regimes. 

i. System of Relaxation Equations and Adiabatic Variables. Let us examine the process 
of relaxation in a mixture of molecules of species s. We will assume that the internal 
state of a molecule is characterized by a single quantum number v (such as in the case of 
delayed vibrational relaxation in a mixture of diatomic molecules [I0]). The equations for 
the populations of individual energy levels ns(V) ~ ns(V ; r, t) have the form [i0] 

o,,~(,__~) + V" [un. (v)l + v" [u. (v) . .  (v)] = 4 (s I n), 
at 

4 (~ I n) = Z I? ~ (.~ I n) = Z E .r(s (.~, ~, In), 
i=1,2 i = 1 , 2  s 1 

( 1 . 1 )  

where u is the hydrodynamic velocity; Us(V) is the rate of diffusion of molecules of species 

s in the state v; Iv(I) is the linear part of the collision integral, describing the trans- 

fer of energy between the internal and translational degrees of freedom of the gas; and !v(2) 
is the quadratic part of the collision integral, responsible for intermolecular energy trans- 
fer. 

For the concentrations 

Eqs. (i.i) take the form 

x~ (v) ----- n~ (v)/n, n -~ Z n~ (v) ( 1 . 2 )  
$,V 

a t  

J',(v) ! ,~ ' v '  [u~(v>~(v) : [,,(.s'[x) 

l~ 1) (< ~ ] x) = E [p~,,, (~, .~)z~(~O - n,:~ (~, ,"0 ~'~ (~')1, 
,tt 

z~J ~ (s, ,~, I x) :  Z r , , ~ .  .,.~. (~,, .~) ~ (,,) ~q ' ~ L t ~,'  b~, sa )  x.~ ( F )  x q  ( x )  - -  . v ~  ()~)] 

(1.3) 

(1.4) 
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(the dot denotes the total derivative with respect to time). In (1.4), P~v(s, s z) and 
P~KX(s, sz) are the probabilities of the inelastic transitions ~ + v and ~, < + v, X in 
the collision of molecules s and sl per unit of time. 

After introduction of the probabilities P~v(S)~P,v(s, sl) of ].i + v transitions in a 

molecule s accompanying a collision with any other particle, we find it convenient to write 
the linear part of the collision integral as a sum taken over the number of transferred 
quanta 7 : 

I~)(sl x) - .,..a ~ =,,.'e'(1) (s[ x), 

i(l) ( I .  5 ) ,,;v (s I x) ~ P~+v', (.9 x~ (v + v) - -  [P,,,'+~ (s) + P~,~_~ (s)] x, (,:) + 
+ P,,-v,,  (s) x~ ('v - -  ~,). 

We change over from the concentrations Xs(V) (v _> 0) to the adiabatic variables Xs(0), 
fs(V) (~ e I) for Iv (z) by means of the nonlinear substitution of variables [7] 

a # ) L ( v )  = x~(~,)!x~(v - ~), a,,(s) = P,,_~,,(s)/P,,~_~(s), ( 1 . 6 )  

I t  foLLows f rom ( 1 . 5 )  t h a t  

x~ (v + y) == x~ (v) l I  a,,+o (s) h (v + a). ( 1. 7 ) 6=1 

Insertion of (1.6)-(1.7) 
(we are not yet examining the quadratic part of the collision integral and, 
we ignore diffusion) : 

d In ]~ (v) = / / s  (/~ (v)) + E. (f~) + Fv (s), 
dt 

where 

into (1.3)-(1.5) leads to the following systems of equations [7-9] 
for simplicity, 

R, = Z B ?  ) =-  Z [A,.;~ (.~) # (,,) + B,.:~, (.~) + c,.;~ (~) l-J (,:)]; 
? "g 

= = _ / : . ,  (v) [ I I ~  (*)(a~ (v, v; o) - 1) - 
? '7 

- II,.-'-~:~ (~)(~, (v - ~, v; ,') - D ]  + IT ~ (,') [ I I ~  ( f f  x 

x (a7~ (~, - y, "t,; v) - i )  - I I~ .L , ; , , ( s ) (ag  I (v - I - y, y; v) - t ) ]} ;  
d 

I'~ (s) . . . . .  7/- 1,~ a,. (s). 

( i . 8 )  

(1.9) 

(1.1o) 

(1.11) 

In (1.9)-(1.10)we introduced the notation 

A~,;v (s) + + - -  IIv_:t;~ = II,,n, (s) (s); C~;~ (s) = II: ;v (s) - II~'_~:~ (s); 

B,,n, (s) = - -  [ (P~+~  (s) - -  P,,-1,,-l+~, (s)) + (Pv~,-~, (s) - -  P,~.~,,_~-~ (s))l; 
,g ",; 

,5=1 6=I 

Y 

a., (,,, v; - - =  H (,, + m). 
,5=1 

In the case of smooth distributions for which fs(V) depends weakly on v, the nondiagon- 
al (with respect to v) term Es([ s) in (1.8) is small [since ~s(V, ~; ~) - i] and in the 
zeroth approximation with respect to E s we can solve Eqs. (1.8) independently of one another. 
Thus, transformation (1.6) will be regarded as an analog of the transition from phase to adiabatic 
variables in Hamiltonian mechanics, and the variables fs(V) themselves will be referred as 
adiabatic [ii]. 
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2. Transition to Adiabatic Variables in the Quadratic Part of the Collision_j[ntegral. 
There are two methods of accounting for the contribution of intermolecular exchange in Eqs. 
( 1 . 8 ) .  

A. The first method involves the introduction of the "effective" probabilities of in- 
elastic transitions Ppv*(s). In terms of the latter, the right side of system (1.3) can 
be written in a form analogous to (1.5) [7, 9] with 

s 1 6 

, [ ~1~(6) (S, S1)]. (2.1) 
s 1 6 

Here, the moments Mp9 (6) are determined by the equalities 

.~.r , • - -  P,,+v,,(s, x~ (x - -  

( 2 . 2 )  
M(6) p• .~ ~ + ~  (s, s~) ~ E ,'~+v ts, s,) x ~  (• 

Thus, in this approach, allowance for intermolecular energy transfer does not alter the 
structure of Eqs. (1.8), and in Eqs. (1.6)-(1.7) it is sufficient to make the substitution 

~,~ (~)-+ a* (~) = p:_~,, (~)/ p*~,,_~ (s). 

Here, however, system (1.8) must be supplemented by a system of equations describing the 
evolution of the moments Mpv(~) over time. The derivation of this system depends on the 
character of the dependence of the rate coefficients in (2.2) on the quantum numbers. For 
example, the form of this system was discussed in [6, 7, 9] for the vibrational relaxation of 
harmonic oscillators in the presence of sources of vibrationally excited particles and weak- 
ly harmonic oscillators with small deviations from equilibrium. A separate article will 
examine the derivation of a closed system of equations for the moments Mpv(8) in the case 
of vibrational relaxation in a mixture of weakly harmonic oscillators with arbitrary devi- 
ations from equilibrium. Nevertheless, the approach described above can be used to obtain 
approximate analytic solutions for system (1.8) in those situations when the moments M~v(6) 
are slow variables compared to fs(~). 

B. The second method involves "symmetrization" of system (1.3), which is "asymmetric" 
in the sense that its left side and the first term in the right side are linear with respect 
to Xs, while the second term is quadratic. Recalling that in the derivation of (1.3) it was 
assumed that the probabilities of p + v transitions in a molecule s are independent of the 
internal state of the partner in the collision sl, if we drop this assumption we can write 
Iv(1)(s, siIx) in the form 

I~  ) (s, s~ [ x) = ~, [ P ~  (% sa) x~ (9) x h (u) -- P ~  (s, s~) x~ (v) x h (• ( 2 .3  ) 

Here, ~a-~,,~,sl) r~](• -= ~,v,.,~j) i.e., P~v(<.%)~ sl)/x h, ~ To obtain the "sym- 

metric" (quadratic with respect to x s) analog of kinetic equations (1.3), with allowance for 
(2.3) we write the following system for the product of the concentrations 

~ 1  (v, ~) - -  x~ (v) z~ (~), 

f o r  s i m p l i c i t y  i g n o r i n g  d i f f u s i o n  p r o c e s s e s :  

. %%t\ *~ % )x~  

(2.4) 

As before, it is convenient to rewrite the collision integral in the form of a sum taken 
over the number of transmitted quanta. To abbreviate the notation [taking into account the 
symmetry properties of the transition probabilities Ppv<~(s, sl) = p~PV(sl, s), Ppv<l(s, 

sl) = PKIPV(sl, s)], we perform the summation SPv,l(s , sl) ~ Fv,i(s , sl ) + Fl,v(sl, s), 
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s~) is any  quantity dependent on the quantum numbers ~ and i of molecules s where Fv,%(s, 
and s~, respectively: 

y,~q (v, X) -- ~ E o'~,~.;v=r~ (s, s, ly).  
*~ "--1 o 

Here, Iv,~;X(z) has the same structure as Iv;y(~) in (1.5), while with 

the most likely isoquantum transitions Iv;~;7(=) has the form 

i(~) p~-v~, (v + % )~ -- ~) --. ~+v v. s~) Y+'h (v, ~). %',~-;V = 'V+'~' (8, 81) Yss 1 D)'%--V Is" 

We introduce variables Zssz(V, ~) normalized with respect to the equilibrium (Boltz- 
mann) values : 

B ( 2 . 6 )  
x~ (v) ~ Q?~ exp [-- es (v)]; ss (v) - ~  E~ (~ , ) / kBT .  

(2.5) 

allowance for only 

In terms of these variables, (2.5) appears as 

d lnzss~(?,  ~)_t_ [8s (~ l )_<ga>_l .  g s l (~ , )_<gs~>] -~ t  l n r  = X X S/(i)  (S, SllZ) 
dt v i=1,2 

(2.7) 

In system (2.7), we change over to the adiabatic variables Zssz(0, ~), fssz(V, 
determined by analogy with (1.6) from the equalities 

(v, ~) ~" z~ (~; - -  t) P._~.  (*, q) 
b,.~. (s, s~) I.~.~ (v, ~) -- "~' b~,~ (s, s~) - ~ ,,~ 

zss I ( v -  i, ~.) ' Pvv--I(S' Sl) . (V) 

Differentiating (2.8), we find 

d In f,q (,', 2~) = d [In z~, h (v, ~) --  In z, h (v - -  I, ~,) - -  In by,,. (s, s~)]. 
dt " 

z) (v ~ 1), 

(2 .8)  

The derivatives of the variables 
tem (2.7), while the coefficient 
Then 

d ln / ' h  (v, )') X Z SQ(O "(~) 1 " 0 " , , ' - * , ' 5 )  d-T = t v ,~ ;v-  *v-~.x;'el + T ~ - I n  p~_,v(s, 5 /  

If we use the relation 

Zss~(V - 1, ~) and Z s s . ( V ,  ~) can be c a l c u l a t e d  u s i n g  s y s -  
can be c a l c u l a t e d  on t ~ e  b a s i s  o f  i t s  d e f i n i t i o n  in  ( 2 . 8 ) .  

which follows from 
right side of (2.9) 

? 
Zss 1 (V "~ ~', ~) --'-- Zss 1 (V, ~) Hbv+6,~.  (6", s1)/s,1 (u -~- ~, )~) 

6= 1 

( 2 . 9 )  

( 2 . 8 ) ,  we 
through the adiabatic variables: 

+ , ~:) ffq (~, ;q - ~.~ *,,,).;?T(I) (8, 81 I f  ) --= [ n%.,~.;~; (8 ' 81 ) a-[S.~l (%, ~, ~,; P~;v+y (8, 81) ] - -  

i (2)  / s ~z - [ a% (v, X, ~?; v) I,~, (v, X) 

can readily express the x-quantum collision integrals in the 

,] 
where 

p • . -  ~x t s + ~+~ ~ , q)  ~,~:~ (~, ~) IIE~+~:~ (q, 0 .  

? 
~[,s I (%2, X, ~; VL) = 6II1 lss 1 (%2 + 8, Z)/Is~ 1 (~, Z), 
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+(s, sl) which are determined as they were in The subscript I in the coefficients Hv,l; ~- 
system (1.8) denote that the coefficients are expressed through the probabilities of one- 
quantum transitions. Considering that these probabilities depend weakly on the superscript, 
we find from (2.9) that 

a In L h 6', X) (~) ~(~ " -- = j,,,~ (s, h )  + ~,.,~. ts, h )  + r , ,a  (s, h) ,  
dt  

�9 ,'i~>,,+ X rz<,'  " '~+ s . +  
,y 

(~> (~,s,  l f ) ] ,  ( 2 . 1 o )  J(m) ~ S r m )  (s, s+lf ) - -  Iv-x,x;w v,g = L~v,X;~; 
? 

[ p ~ _ ~  (s, ~ r,,.,+ (, ,  .+~) +-=+ /' ~ in '~ . ,+,)/P+-,,,,( ,~ , )I .  

The first two terms in the right side of (2.10) describe the degree to which inelastic col- 
lisions of molecules s and s I in states v and i contribute to changes in the variable 
fssl(V, I) when there is a change in the state of only the molecule s(Jv,l(1)) or both mole- 
cules (Jr,l(2)). The last term plays the role of "hydrodynamic source." 

By analogy with (1.8), Jv,l (1) can be written in the form of the sum of the diagonal 
Rss~(fss1(V, I)) and the nondiagonal Essl(fss~) (with respect to v) parts having the struc- 
tures (1.9) and (i.i0), respectively. Here, the coefficients in the expressions are deter- 

mined through the quantity Hv,l;7• sl). The term Jr,l(~) contributes only to the part 
which is diagonal with respect to f. 

Thus, in the given approach, allowance for intermolecular exchange does not alter the 
structure of Eqs. (1.8). It gives only the contribution to the component in their right 
side which is nondiagonal with respect to f. For smooth initial distributions (fss~(V, I) - 

f), the effect of the nondiagonal component on the relaxation process can be considered only 
within the framework of perturbation theory or by the iteration method. Here, as the zeroth 
approximation it is natural to use the solution of the system which is diagonal with respect 
to 

: n / ~ ,  (v, ~) = B,~: (~s,  (~, ~)) + r~,~ (s, s~) d--F " (2.11) 

In a number of cases, this solution can be found analytically [7, 8]. 

In contrast to the first approach, here Eqs. (2.10)-(2.11) need not be supplemented by 
a system of equations for the moments of a distribution function. First of all, this opens 
up the possibility of analyzing general laws governing relaxation processes with an arbi- 
trary dependence of the probabi!iti&s of inelastic collisions on the quantum numbers. Sec- 
ondly, it significantly simplifies both analytical and numerical integration of system (2.10) 
for specific relaxation problems [ii]. Now the latter do not have to be linked with inte- 
gration of a system for moments (for example, for the store of vibrational quanta in the 
case of vibrational relaxation). However, this approach requires a much smoother distribu- 
tion function compared to the first approach [due to the presence of ratios of the form 

fssl(V, l)/fsls(l , v) in Jv,l(2)], and it appreciably increases the size of the initial sys- 
tem of equations. 

System (2.10) must be supplemented by equations for Zss1(0, I)+ With v = 0, it: follows 
from (2.5) that 

Slo,~+;v xl I Y). 

Proceeding successively to variables (2.6) and the adiabatic variables, we obtain 

__ d d+d ~n z++ I (0, ~) + [~+ (0)- <+,> + ~'I (~) -- (%>1 ~ In r 

II + (s, s~)IJ=/,+1 (& ~) ~ (s, sJ  * ' (~, 0, V; ~) v ~ 0 ) - -  

00 p00  - -  P~,+,; (s~, s) - -  ++~,-v (s~, s) + rI~o:~ (s~, s) r~-",~+ (x - -  7, o, 7; 3~)/2J (7+, o) + 

+ P~ (s, s~) q~o,~.~ (s, s~) B.I (6, ~)/51, (~ - -  7 + & 7) - -  t . 

(2.12) 
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Finally, to make the reverse transition from adiabatic variables to concentrations, we 
need to successively use definitions (2.8), (2.6), (2.4) 

B v 
y,s~ (~, ~) = x~ (v) x~ (~) = x, b') x~l (~) z~,~ (0, ;~) ~=~ b~,~ (s, h)  h , ,  (~, ~), 

From t h i s ,  w i t h  a l l o w a n c e  f o r  n o r m a l i z a t i o n  of  t h e  c o n c e n t r a t i o n s  [by v i r t u e  o f  ( 1 . 2 ) ] ,  we 
have  

B B v 
x, (v) = ~ Y,sl (% %) = xs (v) E x,~ (%) z,s~ (0, %) I I  b~A (s, s~)/~5 (5,)~). ( 2 .13  ) 

~,s I ~,S 1 6=I 

3. Relaxation in a Boltzmann Thermostat. One-Quantum Approximation. In the above 
discussion, we did not presume satisfaction of the principle of a detailed balance between 
the probabilities of inelastic transitions. This makes it possible to use the above-de- 
scribed methods to study isolated modes of polyatomic molecules or the relaxation of gas 
mixtures in a non-Boltzmann thermostat (such as in the presence of sources of excited parti- 
cles [7, 9]). If the principle of detailed balance is satisfied (Boltzmann thermostat), 
i.e., 

e,., (s, ,~,) ~xp [ -  (~, (~) + ~,, (~))], (3 .1 )  ~ . ~ ( ~ , ~ ) ~  [ -  (~(~) + %(• : ~. 

then the structure of the equations obtained in Part 2 is simplified greatly because in this 
case bv,%(s, sz) = i, Hv,~;7+(s, s I) = Pv~+7X%(s, sl), Hv,X;7-(s, sl) = Pv~_u sl), 
~v,~;7(s, sz) = i. Here, Eq. (2.13) for the reverse transition from adiabatic variables to 
concentrations takes the form 

V 
B 

x ,  (~) = x, (~) ~,'1~ z.~ (0, 70 ~ (;~) I I ,  I.~ (~, ~). ( 3 . 2  ) 

Considering that the probabilities of transitions generally decrease rapidly with an 
increase in the number of transmitted quanta, a solution to the equations of vibrational 
kinetics in the zeroth approximation can be found within the framework of the model of one- 
quantum transitions. Then with satisfaction of Eq. (3.1) in the first approach, we obtain 
a system of the form (1.8) with 7 = i for the functions fs(V). In this system, the effec- 
tive probabilities (2.1) are determined by the equalities 

p .  =: ~ P W~)•215215 ' (3 .3 )  

h L :~ 

while in the second approach system (2.10)-(2.13) reduces to equations for fss~(V, ~) (the 
index ~ = 1 will henceforth be omitted): 

_~d in Is, h (%', ~,) : Av,~ (s, sl) ]~,~ (v, ~) + Bv,~ (s, s~) + dt (3 .4 )  
+ C,,,~ (s, s~) . ~  (v, 7. 0 + ~=~,~ ~,,,~(~ (s, s~) + r,,~ (s, sO, 

where 

S l ) = P w ~ + l ( s , s ] ) - - r v - l v v ,  li, sO=P,,~-~(s, sl)--P~-l~-2(s, sO; 
Bv,z (s, sl) : - -  [Av,~. (s, sl) + C~,~ (s, sl)l; F~,~. (s, sl) = 

= -- [ ~  (v) -- es (v -- i ) ]  d In T; 

= z ) P . ~ + , ( . , . , ) [ I . , , ( ~  + t. z)/h.,(v, z ) -  q -  
- I,.,-" (v, z) p~_,,_~ (~, s,) [ h , ,  (~, z ) / l ; , ,  (,~ - t ,  ~) - -  t ]; 

(2) s ~--i P ~ + l  (s, s 0 + + e,.~ (~, ,) = [ i . ,  (~ t. X)/l.,, (z. ~ t) - I ]  - 

- . - ~ _ ~  ts, s,) [io,, (~,, ;.)/I~,~ (~,.-~) - t ]  + , ~ _ ~ , ,  ,, L . - e ,  + l ,  ~)tI,~,(.~, 
Z + ~) - -  ~] - -  P~-+~L~ (~, ~ )  [ I ,~.  (Z + I ,  ~ - -  t ) / I . ,  (~, - -  1, ~. + t )  - -  t ] ,  
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and to equations for Zss1(O, ~): 

d ddt In zsq (0, Z) + [e,s (0) - -  <es> + e~ (~) - -  @~>] --$/- In T = 

O0 = @ (,, ,~) [I~,, (~, ~) - i ]  + p,~,.+, %, ~) [i,,~ (~, T ~, o) - l ]  + 
O0 

+ p~_~  (~,, ~) [~,~i(~, 0 ) - .  ~] + ~ - ' - o ~  ,~. -~) [/~.,, (~, ~0/1,~ (~, ~) - ~]. 

( 3 . 5 )  

In the zeroth approximation with respect to Ev, ~ and Fv, %, we can use (3.4) to obtain Ricat- 
ti's general equation with a zero coefficient sum. The general solution of this equation 
can be written in quadratures with arbitrary transition probabilities [7]. 

4- Example: One TComponent Gas~ Harmonic Approximation. To compare the methods de- 
scribed in Part 2 for changing over to adiabatic variables in the quadratic part of the col- 
lision integral, we will examine the following model problem: thermalization of a vibration- 
ally excited (with T V r T) gas of diatomic molecules modeled by harmonic oscillators, assum- 
ing satisfaction of condition (3.1). Since only one-quantum transitions with the probabili- 
ties [i] 

Pv+lv = (v + t)Pj0, Pw+t = (v + t)Pol , 

px- l~  .~ •  n(~ + 1) Q10, ( 4 . 1 )  ~+~, = ~ (v + !)O~o, - ~ + ~  = 

are allowed in a harmonic approximation, we will use the simplified equations in Part 3 as 
the initial equations. 

In the first approach (Part IA), if we consider that, due to (3.3) and (4.1), the ef- 
fective probabilities in the given situation have the form 

( ~ • 2 1 5  i s  t h e  s t o r e  o f  v i b r a t i o n a l  q u a n t a ) ,  f o r  t h e  v a r i a b l e s  x ( O ) ,  f ( v )  (v  ~ l )  we 

o b t a i n  

d , d t n x ( O ) = A ( / ( t ) - -  i), In ./(v) = AI (v) "-r B + C/-~ (v) + Ev (f) + l?, --g/- 
( 4 ~  

where 
A = Po~ -i- r C = P~o -~- (~ + f) Q~o; B = - -  (A -t- C); t7 . . . . .  d in A " - -  

d t  C ' 

e,,  (/) = A (,,, i- 1) f (v) [/(,~ + l ) y  (,~) - -  i I - c (,: - i )  ! -~  (~,) [1 (v)/ l  (v - t )  - 11. 

If the initial distribution is a Boltzmann distribution with a nonequilibrium vibration- 
al temperature TV ~ i.e., if 

x ( v [ t - - :  O) = X B(vIT~)= [ t - - e x p ( - -  e ~ ) l e x P ( - - v ~ )  ( 4 . 3 )  

(e v = fi~e/kBTv), then we need to supplement this system with the initial conditions 

] (v[ t  = 0)--/~ (v )=  (C~ ~ e xp ( - -  @2), x (01 t =  O) = x ~ (~  = I - -  exp ( - -  0~) .  ( 4 . 4 )  

I t  i s  n o t  h a r d  t o  show t h a t  f o r  d i s t r i b u t i o n s  o f  t h e  f o r m  ( 4 . 3 )  t h e  n o n d i a g o n a l  t e r m l E , ( [ )  
in  t h e  f i r s t  e q u a t i o n  i s  i d e n t i c a l l y  e q u a l  t o  z e r o .  Thus ,  t h i s  e q u a t i o n  ( w i t h  a l l o w a n c e  
f o r  t h e  f o r m  o f  t h e  " s o u r c e  t e r m "  F) can  be r e w r i t t e n  i n  t h e  fo rm  

In g (v) = Cg (~) + B + Ag -~ (~) ( 4 . 5 )  dt 

(g(v) ~ Af(v)/C, g~ = exp(-@V~ Since the coefficients in (4.5) satisfy the condition 
A + B + C ~ 0, the solution of Cauchy problem (4.2), (4.4) is readily calculated in quadra- 
tures (see [7, 8]). Omitting this solution here, we note only that since neither the ini- 
tial data nor the coefficients in (4.5) depend on v, the form of initial distribution (4.4) 
remains unchanged in the course of the relaxation process in this case (this is the well- 
known principle of canonical invariance). The only changes are in the vibrational T V and 
translational T temperatures of the gas. By virtue of the energy conservation law, these 
quantities are connected by the relation 
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O-  1 , 2 n- -5-(exp O V -  t) -1 = const, O = Iz(%/kBT, (4.6) 

while the Cauchy solution that was found is the integral equation for @v(t) [since Ov(t) = 
-ing(t)]. This equation can easily be used to obtain the familiar equation for the store 
of vibrational quanta 

(z = Plo(O(a))[( l  -~- ~) exp (--O(a))  - -  cz], (z ---- (exp Ov - -  1)-*, ( 4 . 7 )  

where the relation O(a) is determined by Eq. (4.6). 

Within the framework of the second approach (Part B), we obtain the below Cauchy prob- 
lem for functions f from (3.4)-(3.5), probabilities of the form (4.1), and initial condi- 
tions (4.3) in the case of a one-component gas 

In / (~ )  = A~] (~) + B~ + C ~ r '  (~)+ ~ In c ; / ~  (~) = exp(O ~ - -  0%), ( 4 . 8 )  
dt 

where h~ = P01XX; C~ = Pl0~; B~ = -(h~ + C~) and we considered that with satisfaction of 
the principle of detailed balance 

C~ x(~) = e ~  x(~,) / ( ~ " ; q  ~= A--~. ~(~----.1) x ( ~ - - l )  - l ( v ) .  

As above, Eq. (4.8) is easily integrated in quadratures, while the absence of a dependence 
on ~ in the coefficients and initial conditions again leads to the principle of canonical 
invariance. Here, however, since the coefficients in (4.8) are not explicitly dependent on 
~, the solution obtained in the Cauchy problem determines the time dependence @v(t) if @(t) 
is given by external conditions. If 0(t) and @v(t) are connected by law (4.6), then the two 
approaches prove to be equivalent. 

Thus, two methods have been proposed for describing relaxation processes in mixtures of 
molecular gases in terms of adiabatic variables. The advantages and disadvantages of each 
were discussed. The changeover to adiabatic variables in the kinetic equation makes it pos- 
sible to establish more general relaxation laws for arbitrary models of rate coefficients 
[8, 9], obtain approximate analytic solutions to these equations [7, 8], and construct ef- 
fective algorithms for their numerical integration [ii]. Using the one-quantum transition 
approximation, we presented the simplest form of the relaxation equations in adiabatic vari- 
ables for relaxation of a gas mixture in a Boltzmann thermostat. The use of these approaches 
was illustrated by means of a simple model problem on the vibrational relaxation of diatomic 
harmonic molecules in a Boltzmann thermostat. 
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OSCILLATIONS IN THE PARALLEL DISCHARGE OF TWO SUPERSONIC 

NONISOBARIC JETS 

S. G. Mironov UDC 534.2:532 

Oscillating flows in systems of parallel supersonic nonisobaric jets discharged into a 
submerged space [1-12] are of considerable interest from the viewpoint of practical applica- 
tions of this phenomenon and the development of models of transients in supersonic jets. 
Worth noting among the different studies in this area is [2], where for a system of parallel 
jets and jets parallel to a shield the author obtained the first data on the possible modes 
of vibration, their relative intensities, and the region of Mach numbers in which they exist. 
The authors of [4-12] presented the most complete empirical results on the modal composition 
of acoustic vibrations, their intensities, and the types of oscillations of the wave struc- 
ture of the jets in relation to the discharge parameters and the interlaminar distance in 
two-jet systems. This information was compared with the analogous characteristics of single 
jets. However, no physical model has yet been presented to describe these characteristics 
in systems of jets. 

In the present study, we obtain new empirical results for two parallel jets and propose 
models to describe the directionality of the acoustic radiation and the conditions for the 
excitation of oscillations. 

i. Two parallel jets were created by means of supersonic conical nozzles with an out- 
let section having a diameter d a = 1.4.10 -2 m. We used nozzles with the Mach numbers M a = 
i, 1.5, 2, and 3.7 and the cone angle 9 ~ . Compressed air from the prechamber was directed 
to smoothly change the distance between nozzles S = S/d a from 1o8 to 7 and to displace the 
nozzles longitudinally relative to each other. We could remove one nozzle and in the middle 
of the inter-nozzle gap install a flat metal shield parallel to the jet axis. The shield 
measured 0.15 x 0.3 m. 

The acoustic pressure pulsations were measured with two piezoelectric sensors. The di- 
ameter of their receiving part was 3.10 -3 m, while the limiting measurement frequency was 
60 kHz. One sensor was placed on the line of centers of the nozzles midway between the lat- 
ter. This sensor was positioned 3 diameters downflow of the nozzle edges. The constancy of 
the middle location of the sensor was assured by installing it at the center of a strip of 
rubber attached to the nozzles. To determine the directionality of the acoustic radiation 
in the plane perpendicular to the jets, the second sensor was positioned so that it could 
turn about its axis. This axis was parallel to the jets and passed through the center of 
the nozzle spacing at the level of the first sensor. The radius of rotation was 7 nozzle 
diameters. 

Information on vibrations of the wave structure of the jets was obtained with IAB-451 
shadowgraph equipped with an ISSh-15 stroboscopic lamp that was synchronized with the acous- 
tic pressure pulsations. This made it possible to obtain images of the vibration phases 
with a high degree of averaging over random fluctuations of the flow field. 

2. The first three schlieren photographs in Fig. 1 show the three main types of flows 
that were recorded experimentally. These flows exist during oscillations of two parallel 
jets in the system. The photographs correspond to the following discharge conditions: i) 
M a = I, n = 2.37, S = 2.5; 2) M a = i, n = 1.83, S = 5.15; 3) M a = I, n = 1.32, S = 1.8. It 
is evident from the first photograph that the wave structure of the jets undergoes flexural 
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